Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide
نویسندگان
چکیده
Dispersion of nanomaterials in polymeric matrices plays an important role in determining the final properties of the composites. Dispersion in nano scale, and especially in single layers, provides best opportunity for bonding. In this study, we propose that by proper functionalization and mixing strategy of graphene its dispersion, and bonding to the polymeric matrix can be improved. We then apply this strategy to graphene-epoxy system by amino functionalization of graphene oxide (GO). The process included two phase extraction, and resulted in better dispersion and higher loading of graphene in epoxy matrix. Rheological evaluation of different graphene-epoxy dispersions showed a rheological percolation threshold of 0.2 vol% which is an indication of highly dispersed nanosheets. Observation of the samples by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), showed dispersion homogeneity of the sheets at micro and nano scales. Study of graphene-epoxy composites showed good bonding between graphene and epoxy. Mechanical properties of the samples were consistent with theoretical predictions for ideal composites indicating molecular level dispersion and good bonding between nanosheets and epoxy matrix.
منابع مشابه
Effect of Asymmetric Functionalized Graphene Oxide (Janus GO) on Young′s Modulus and Glass Transition Temperature of PSf Ultrafiltration Membrane
In this study, effect of asymmetric functionalized graphene oxide (Janus GO) on Young′s modulus and glass transition temperature of Polysulfone (PSf) ultrafiltration membranes was investigated. The membranes were prepared via phase inversion method and GO nanosheets were dispersed in casting solution by sonication. Results showed that the Normalized Young’s modulus (on the basis of neat ...
متن کاملPreparation of high performance PP/ reduced graphene oxide nanocomposites through a combined in situ polymerization and masterbatch method
Despite the great potential of graphene as a nanofiller, achieving homogeneous dispersion remains the key challenge for effectively reinforcing polyolefin (such as polyethylene (PE) and polypropylene (PP)) nanocomposites. Therefore, in this research, we report a facile combined in situ polymerization and masterbatch method for fabricating PP/reduced graphene oxide (rGO) nanocomposites. In the p...
متن کاملStudying the Corrosion Protection Behavior of an Epoxy Composite Coating Reinforced with Functionalized Graphene Oxide by Second and Fourth Generations of Poly(amidoamine) Dendrimers (GO-PAMAM-2, 4)
In this research, graphene oxide (GO) nanoparticles were modified by second and fourth generations of poly(amidoamine) dendrimers in order to improve the particle dispersion quality in the epoxy matrix and therefore its barrier anti-corrosion performance. Confirmation on the GO surface modification by Polyamidoamine generation 2 (PAMAM2) and polyamidoamin generation 4 (PAMAM4) was carried o...
متن کاملElectrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film
In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polym...
متن کاملElectrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film
In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polym...
متن کامل